BIM1
Gene Ontology Biological Process
- microtubule depolymerization [IMP]
- microtubule nucleation [IPI]
- mitotic sister chromatid cohesion [IGI, IMP]
- mitotic spindle assembly checkpoint [TAS]
- negative regulation of microtubule depolymerization [IMP]
- nuclear migration along microtubule [IMP]
- positive regulation of microtubule polymerization [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MAD1
Gene Ontology Biological Process
Gene Ontology Cellular Component
- kinetochore [IDA, IMP]
- nuclear pore [IDA]
- nucleus [IDA]
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Systematic analysis of microtubule plus-end networks defines EB-cargo complexes critical for mitosis in budding yeast.
Microtubules are ubiquitous cytoskeletal polymers with essential functions in chromosome segregation, intracellular transport, and cellular morphogenesis. End-binding proteins (EBs) form the nodes of intricate microtubule plus-end interaction networks. Which EB binding partners are most critical for cell division and how cells organize a microtubule cytoskeleton in the absence of an EB protein are open questions. Here, we perform a detailed ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MAD1 BIM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -16.8394 | BioGRID | 213398 | |
BIM1 MAD1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6563 | BioGRID | 374494 | |
BIM1 MAD1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6809 | BioGRID | 2107045 | |
MAD1 BIM1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 341399 | |
MAD1 BIM1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 167409 | |
MAD1 BIM1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 165988 | |
BIM1 MAD1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 166549 | |
BIM1 MAD1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 109058 | |
BIM1 MAD1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 450050 |
Curated By
- BioGRID