BAIT

IXR1

ORD1, L000000881, YKL032C
Transcriptional repressor that regulates hypoxic genes during normoxia; involved in the aerobic repression of genes such as COX5b, TIR1, and HEM13; binds DNA intrastrand cross-links formed by cisplatin; HMG (high mobility group box) domain containing protein which binds and bends cisplatin-modified DNA, blocking excision repair; IXR1 has a paralog, ABF2, that arose from the whole genome duplication
GO Process (3)
GO Function (2)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

DUN1

serine/threonine protein kinase DUN1, L000000531, YDL101C
Cell-cycle checkpoint serine-threonine kinase; required for DNA damage-induced transcription of certain target genes, phosphorylation of Rad55p and Sml1p, and transient G2/M arrest after DNA damage; Mec1p and Dun1p function in same pathway to regulate both dNTP pools and telomere length; also regulates postreplicative DNA repair
GO Process (3)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

The RNA-binding protein Puf5 and the HMGB protein Ixr1 regulate cell cycle-specific expression of CLB1 and CLB2 in Saccharomyces cerevisiae.

Sato M, Rana V, Suda Y, Mizuno T, Irie K

Clb1 and Clb2 are functionally redundant B-type cyclins, and the clb1? clb2? double mutant is lethal. In normal mitotic growth, Clb2 plays the central role in the G2-M progression. We previously demonstrated that the RNA-binding protein Puf5 positively regulates CLB1 expression by downregulating expression of the repressor Ixr1. The decreased expression of CLB1 by the puf5? mutation caused a severe ... [more]

PLoS One Feb. 03, 2025; 20(2);e0316433 [Pubmed: 39899527]

Throughput

  • Low Throughput

Ontology Terms

  • vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
IXR1 DUN1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-14.8947BioGRID
540981
DUN1 IXR1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4216BioGRID
364108
DUN1 IXR1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4768BioGRID
2090006
DUN1 IXR1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.422BioGRID
909845
DUN1 IXR1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
455435
DUN1 IXR1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
532222

Curated By

  • BioGRID