SGS1
Gene Ontology Biological Process
- DNA double-strand break processing [IGI]
- DNA duplex unwinding [IDA]
- DNA topological change [IDA]
- DNA unwinding involved in DNA replication [IDA]
- cellular response to DNA damage stimulus [IMP]
- chromosome organization [IMP]
- double-strand break repair via homologous recombination [IGI, IMP]
- gene conversion at mating-type locus, DNA double-strand break processing [IGI]
- intra-S DNA damage checkpoint [IGI, IMP]
- meiotic DNA double-strand break processing [IGI]
- meiotic chromosome segregation [IMP]
- mitotic sister chromatid segregation [IMP]
- negative regulation of meiotic joint molecule formation [IGI]
- regulation of reciprocal meiotic recombination [IGI]
- replicative cell aging [IMP]
- telomere maintenance [IGI]
- telomere maintenance via recombination [IGI, IMP]
- telomeric 3' overhang formation [IGI]
Gene Ontology Molecular Function
HMO1
Gene Ontology Biological Process
- DNA packaging [IDA]
- chromatin organization involved in regulation of transcription [IDA]
- dsDNA loop formation [IDA]
- regulation of ribosomal protein gene transcription from RNA polymerase II promoter [IGI, IMP]
- regulation of transcription from RNA polymerase I promoter [IGI, IMP]
- transcriptional start site selection at RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
The Yeast HMGB Protein Hmo1 Is a Multifaceted Regulator of DNA Damage Tolerance.
The Saccharomyces cerevisiae chromosomal architectural protein Hmo1 is categorized as an HMGB protein, as it contains two HMGB motifs that bind DNA in a structure-specific manner. However, Hmo1 has a basic C-terminal domain (CTD) that promotes DNA bending instead of an acidic one found in a canonical HMGB protein. Hmo1 has diverse functions in genome maintenance and gene regulation. It ... [more]
Throughput
- Low Throughput
Ontology Terms
- resistance to chemicals (APO:0000087)
- vegetative growth (APO:0000106)
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| HMO1 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1366 | BioGRID | 2096817 | |
| SGS1 HMO1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 2895345 | |
| HMO1 SGS1 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | BioGRID | 160036 |
Curated By
- BioGRID