BAIT

CTK1

cyclin-dependent serine/threonine protein kinase CTK1, L000000432, YKL139W
Catalytic (alpha) subunit of C-terminal domain kinase I (CTDK-I); phosphorylates both RNA pol II subunit Rpo21p to affect transcription and pre-mRNA 3' end processing, and ribosomal protein Rps2p to increase translational fidelity; required for H3K36 trimethylation but not dimethylation by Set2p; similar to the Drosophila dCDK12 and human CDK12 and probably CDK13
Saccharomyces cerevisiae (S288c)
PREY

IMD2

PUR5, IMP dehydrogenase IMD2, YHR216W
Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in GTP biosynthesis, expression is induced by mycophenolic acid resulting in resistance to the drug, expression is repressed by nutrient limitation; IMD2 has a paralog, YAR073W/YAR075W, that arose from a segmental duplication
GO Process (1)
GO Function (3)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

IMP dehydrogenase is recruited to the transcription complex through serine 2 phosphorylation of RNA polymerase II.

Park JH, Ahn SH

IMP dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo synthesis of guanine, namely the oxidation of IMP to XMP with a concomitant reduction of NAD+. In Saccharomyces cerevisiae, a family of four closely-related genes, IMD1, IMD2 (also known as PUR5), IMD3, and IMD4, encodes the putative IMPDH. Although IMPDH synthesizes guanine in the cytoplasm, it has also been ... [more]

Biochem. Biophys. Res. Commun. Feb. 19, 2010; 392(4);588-92 [Pubmed: 20097157]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID