BAIT

RTT107

ESC4, L000004424, YHR154W
Protein implicated in Mms22-dependent DNA repair during S phase; involved in recruiting the SMC5/6 complex to double-strand breaks; DNA damage induces phosphorylation by Mec1p at one or more SQ/TQ motifs; interacts with Mms22p and Slx4p; has four BRCT domains; has a role in regulation of Ty1 transposition; relative distribution to nuclear foci increases upon DNA replication stress
GO Process (2)
GO Function (0)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

RTT101

CUL8, cullin RTT101, CULC, L000004737, YJL047C
Cullin subunit of a Roc1p-dependent E3 ubiquitin ligase complex; role in anaphase progression; implicated in Mms22-dependent DNA repair; involved with Mms1p in nonfunctional rRNA decay; modified by the ubiquitin-like protein, Rub1p
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Rtt101 and Mms1 in budding yeast form a CUL4(DDB1)-like ubiquitin ligase that promotes replication through damaged DNA.

Zaidi IW, Rabut G, Poveda A, Scheel H, Malmstroem J, Ulrich H, Hofmann K, Pasero P, Peter M, Luke B

In budding yeast the cullin Rtt101 promotes replication fork progression through natural pause sites and areas of DNA damage, but its relevant subunits and molecular mechanism remain poorly understood. Here, we show that in budding yeast Mms1 and Mms22 are functional subunits of an Rtt101-based ubiquitin ligase that associates with the conjugating-enzyme Cdc34. Replication forks in mms1Delta, mms22Delta and rtt101Delta ... [more]

EMBO Rep. Oct. 01, 2008; 9(10);1034-40 [Pubmed: 18704118]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: resistance to chemicals (APO:0000087)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RTT107 RTT101
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RTT101 RTT107
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
RTT107 RTT101
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
RTT101 RTT107
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
RTT101 RTT107
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-3.4768BioGRID
220822
RTT101 RTT107
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3456BioGRID
2604908
RTT101 RTT107
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
453350
RTT107 RTT101
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-

Curated By

  • BioGRID