MID2
Gene Ontology Biological Process
- UFP-specific transcription factor mRNA processing involved in endoplasmic reticulum unfolded protein response [IMP]
- cell morphogenesis involved in conjugation [IGI, IMP]
- fungal-type cell wall organization [IGI, IMP]
- peroxisome degradation [IMP]
- response to acidic pH [IMP]
- response to osmotic stress [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SLG1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1.
Cell wall integrity signalling in Saccharomyces cerevisiae provides a model for the regulation of fungal wall biosynthesis. Chimers of the major plasma membrane sensors Wsc1 and Mid2 fused to GFP have been employed to show that intracellular and membrane distribution is only dependent on a membrane-anchored cytoplasmic tail. Phenotypic analyses of chimeric sensors in an isogenic Deltamid2 Deltawsc1 double deletion ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: heat sensitivity (APO:0000147)
- phenotype: vegetative growth (APO:0000106)
- phenotype: resistance to chemicals (APO:0000087)
Additional Notes
- Growth defect in the presence of caffeine, SDS, or caspofungin. 37 degrees Celsius may cause either a growth defect or lethality.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MID2 SLG1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 164293 | |
SLG1 MID2 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 3308072 | |
MID2 SLG1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 155891 | |
MID2 SLG1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 259670 | |
SLG1 MID2 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 154759 | |
SLG1 MID2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2775 | BioGRID | 2181408 | |
SLG1 MID2 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 3715067 | |
SLG1 MID2 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 163105 | |
SLG1 MID2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 422906 | |
SLG1 MID2 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 159074 | |
MID2 SLG1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low/High | - | BioGRID | 165258 | |
MID2 SLG1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 259344 | |
MID2 SLG1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 259671 | |
SLG1 MID2 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 255381 | |
MID2 SLG1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 112735 |
Curated By
- BioGRID