BAIT
SLT2
BYC2, LYT2, MPK1, SLK2, mitogen-activated serine/threonine-protein kinase SLT2, L000001919, YHR030C
Serine/threonine MAP kinase; involved in regulating maintenance of cell wall integrity, cell cycle progression, and nuclear mRNA retention in heat shock; required for mitophagy and pexophagy; affects recruitment of mitochondria to phagophore assembly site (PAS); plays a role in adaptive response of cells to cold; regulated by the PKC1-mediated signaling pathway; SLT2 has a paralog, KDX1, that arose from the whole genome duplication
GO Process (11)
GO Function (3)
GO Component (5)
Gene Ontology Biological Process
- UFP-specific transcription factor mRNA processing involved in endoplasmic reticulum unfolded protein response [IMP]
- barrier septum assembly [IGI]
- endoplasmic reticulum unfolded protein response [IDA, IMP]
- fungal-type cell wall biogenesis [IGI]
- peroxisome degradation [IMP]
- protein phosphorylation [IDA, IMP]
- regulation of cell size [IMP]
- regulation of fungal-type cell wall organization [IGI, IMP]
- regulation of transcription factor import into nucleus [IMP]
- response to acidic pH [IMP]
- signal transduction [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
RAD9
chromatin-binding protein RAD9, L000001562, YDR217C
DNA damage-dependent checkpoint protein; required for cell-cycle arrest in G1/S, intra-S, and G2/M, plays a role in postreplication repair (PRR) pathway; transmits checkpoint signal by activating Rad53p and Chk1p; hyperphosphorylated by Mec1p and Tel1p; multiple cyclin dependent kinase consensus sites and the C-terminal BRCT domain contribute to DNA damage checkpoint activation; Rad9p Chk1 Activating Domain (CAD) is phosphorylated at multiple sites by Cdc28p/Clb2p
GO Process (8)
GO Function (3)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Functional connection between the Clb5 cyclin, the protein kinase C pathway and the Swi4 transcription factor in Saccharomyces cerevisiae.
The rsf12 mutation was isolated in a synthetic lethal screen for genes functionally interacting with Swi4. RSF12 is CLB5. The clb5 swi4 mutant cells arrest at G(2)/M due to the activation of the DNA-damage checkpoint. Defects in DNA integrity was confirmed by the increased rates of chromosome loss and mitotic recombination. Other results suggest the presence of additional defects related ... [more]
Genetics Dec. 01, 2005; 171(4);1485-98 [Pubmed: 16118191]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Curated By
- BioGRID