BAIT

MYO1

myosin 1, L000001222, YHR023W
Type II myosin heavy chain; required for wild-type cytokinesis and cell separation; localizes to the actomyosin ring; binds to myosin light chains Mlc1p and Mlc2p through its IQ1 and IQ2 motifs respectively
Saccharomyces cerevisiae (S288c)
PREY

MOB1

L000003356, YIL106W
Component of the mitotic exit network; associates with and is required for the activation and Cdc15p-dependent phosphorylation of the Dbf2p kinase; required for cytokinesis and cell separation; component of the CCR4 transcriptional complex; relocalizes from cytoplasm to the nuclear periphery upon DNA replication stress
GO Process (2)
GO Function (1)
GO Component (4)

Gene Ontology Molecular Function

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Targeted localization of Inn1, Cyk3 and Chs2 by the mitotic-exit network regulates cytokinesis in budding yeast.

Meitinger F, Petrova B, Lombardi IM, Bertazzi DT, Hub B, Zentgraf H, Pereira G

The mitotic-exit network (MEN) is a signaling pathway that is essential for the coordination of mitotic exit and cytokinesis. Whereas the role of the MEN in mitotic exit is well established, the molecular mechanisms by which MEN components regulate cytokinesis remain poorly understood. Here, we show that the MEN controls components involved in septum formation, including Inn1, Cyk3 and Chs2. ... [more]

J. Cell. Sci. Jun. 01, 2010; 123(0);1851-61 [Pubmed: 20442249]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID