BAIT

STP1

BAP1, SSY2, L000002132, YDR463W
Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus; undergoes proteolytic processing by SPS (Ssy1p-Ptr3p-Ssy5p)-sensor component Ssy5p in response to extracellular amino acids; activates transcription of amino acid permease genes and may have a role in tRNA processing; STP1 has a paralog, STP2, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

STP2

L000003370, YHR006W
Transcription factor; activated by proteolytic processing in response to signals from the SPS sensor system for external amino acids; activates transcription of amino acid permease genes; STP2 has a paralog, STP1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to gamma-aminobutyric acid and leucine.

Cardillo SB, Bermudez Moretti M, Correa Garcia S

The Saccharomyces cerevisiae UGA4 gene encodes a permease capable of importing gamma-aminobutyric acid (GABA) and delta-aminolevulinic acid (ALA) into the cell. GABA-dependent induction of this permease requires at least two positive-acting proteins, the specific factor Uga3 and the pleiotropic factor Uga35/Dal81. UGA4 is subjected to a very complex regulation, and its induction is affected by the presence of extracellular amino ... [more]

Eukaryotic Cell Aug. 01, 2010; 9(8);1262-71 [Pubmed: 20581295]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: protein/peptide accumulation (APO:0000149)

Additional Notes

  • double mutants show a decrease in the upregulation of UGA4 in response to leucine compared to single mutants

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
STP2 STP1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4398BioGRID
384806
STP2 STP1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.422BioGRID
2125605
STP1 STP2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
1519335
STP1 STP2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
520882
STP1 STP2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
352985
STP1 STP2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
1519334
STP1 STP2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
352981

Curated By

  • BioGRID