BAIT
GCN5
AAS104, ADA4, SWI9, histone acetyltransferase GCN5, KAT2, L000000684, YGR252W
Catalytic subunit of ADA and SAGA histone acetyltransferase complexes; modifies N-terminal lysines on histones H2B and H3; acetylates Rsc4p, a subunit of the RSC chromatin-remodeling complex, altering replication stress tolerance; relocalizes to the cytosol in response to hypoxia; mutant displays reduced transcription elongation in the G-less-based run-on (GLRO) assay; greater involvement in repression of RNAPII-dependent transcription than in activation
GO Process (4)
GO Function (4)
GO Component (6)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
RAD53
LSD1, MEC2, SPK1, serine/threonine/tyrosine protein kinase RAD53, L000001573, YPL153C
DNA damage response protein kinase; required for cell-cycle arrest in response to DNA damage; activated by trans autophosphorylation when interacting with hyperphosphorylated Rad9p; also interacts with ARS1 and plays a role in initiation of DNA replication; activates the downstream kinase Dun1p; differentially senses mtDNA depletion and mitochondrial ROS; required for regulation of copper genes in response to DNA-damaging agents; relocalizes to cytosol in response to hyoxia
GO Process (8)
GO Function (3)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
A role for Gcn5 in replication-coupled nucleosome assembly.
Acetylation of lysine residues at the H3 N terminus is proposed to function in replication-coupled (RC) nucleosome assembly, a process critical for the inheritance of epigenetic information and maintenance of genome stability. However, the role of H3 N-terminal lysine acetylation and the corresponding lysine acetyltransferase (KAT) in RC nucleosome assembly are not known. Here we show that Gcn5, a KAT ... [more]
Mol. Cell Feb. 26, 2010; 37(4);469-80 [Pubmed: 20188666]
Throughput
- Low Throughput
Ontology Terms
- phenotype: resistance to chemicals (APO:0000087)
- phenotype: temperature sensitive growth (APO:0000092)
- phenotype: inviable (APO:0000112)
Curated By
- BioGRID