BAIT

SIC1

SDB25, cyclin-dependent protein serine/threonine kinase inhibiting protein SIC1, L000001886, L000001822, YLR079W
Cyclin-dependent kinase inhibitor (CKI); inhibitor of Cdc28-Clb kinase complexes that controls G1/S phase transition, preventing premature S phase and ensuring genomic integrity; phosphorylated by Clb5/6-Cdk1 and Cln1/2-Cdk1 kinase which regulate timing of Sic1p degradation; phosphorylation targets Sic1p for SCF(CDC4)-dependent turnover; functional homolog of mammalian Kip1
Saccharomyces cerevisiae (S288c)
PREY

BUB1

protein kinase BUB1, L000000196, YGR188C
Protein kinase involved in the cell cycle checkpoint into anaphase; in complex with Mad1p and Bub3p, prevents progression into anaphase in presence of spindle damage; Cdc28p-mediated phosphorylation at Bub1p-T566 is important for degradation in anaphase and adaptation of checkpoint to prolonged mitotic arrest; associates with centromere DNA via Skp1p; involved in Sgo1p relocalization in response to sister kinetochore tension; paralog MAD3 arose from whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A DNA integrity network in the yeast Saccharomyces cerevisiae.

Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD

A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]

Cell Mar. 10, 2006; 124(5);1069-81 [Pubmed: 16487579]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • confirmed by RSA

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
BUB1 SIC1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
3309655

Curated By

  • BioGRID