BAIT
RAD53
LSD1, MEC2, SPK1, serine/threonine/tyrosine protein kinase RAD53, L000001573, YPL153C
DNA damage response protein kinase; required for cell-cycle arrest in response to DNA damage; activated by trans autophosphorylation when interacting with hyperphosphorylated Rad9p; also interacts with ARS1 and plays a role in initiation of DNA replication; activates the downstream kinase Dun1p; differentially senses mtDNA depletion and mitochondrial ROS; required for regulation of copper genes in response to DNA-damaging agents; relocalizes to cytosol in response to hyoxia
GO Process (8)
GO Function (3)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
NPL3
MTR13, MTS1, NAB1, NOP3, mRNA-binding protein NPL3, L000001270, YDR432W
RNA-binding protein; promotes elongation, regulates termination, and carries poly(A) mRNA from nucleus to cytoplasm; represses translation initiation by binding eIF4G; required for pre-mRNA splicing; interacts with E3 ubiquitin ligase Bre1p, linking histone ubiquitination to mRNA processing; may have role in telomere maintenance; dissociation from mRNAs promoted by Mtr10p; phosphorylated by Sky1p in cytoplasm; protein abundance increases in response to DNA replication stress
GO Process (6)
GO Function (4)
GO Component (2)
Gene Ontology Biological Process
- mRNA export from nucleus [IGI]
- mRNA splicing, via spliceosome [IGI, IMP]
- negative regulation of termination of RNA polymerase II transcription, poly(A)-coupled [IDA, IMP]
- negative regulation of translation [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IDA, IMP]
- translational termination [IGI, IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
A DNA integrity network in the yeast Saccharomyces cerevisiae.
A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]
Cell Mar. 10, 2006; 124(5);1069-81 [Pubmed: 16487579]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- confirmed by tetrad analysis
Curated By
- BioGRID