BAIT

RAD55

putative DNA-dependent ATPase RAD55, L000001575, YDR076W
Protein that stimulates strand exchange; stimulates strand exchange by stabilizing the binding of Rad51p to single-stranded DNA; involved in the recombinational repair of double-strand breaks in DNA during vegetative growth and meiosis; forms heterodimer with Rad57p
GO Process (4)
GO Function (2)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

CTK1

cyclin-dependent serine/threonine protein kinase CTK1, L000000432, YKL139W
Catalytic (alpha) subunit of C-terminal domain kinase I (CTDK-I); phosphorylates both RNA pol II subunit Rpo21p to affect transcription and pre-mRNA 3' end processing, and ribosomal protein Rps2p to increase translational fidelity; required for H3K36 trimethylation but not dimethylation by Set2p; similar to the Drosophila dCDK12 and human CDK12 and probably CDK13
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A DNA integrity network in the yeast Saccharomyces cerevisiae.

Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD

A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]

Cell Mar. 10, 2006; 124(5);1069-81 [Pubmed: 16487579]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • confirmed by tetrad analysis

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CTK1 RAD55
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High0.1938BioGRID
1910546

Curated By

  • BioGRID