BAIT

CLB3

B-type cyclin CLB3, L000000351, YDL155W
B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M transition; may be involved in DNA replication and spindle assembly; accumulates during S phase and G2, then targeted for ubiquitin-mediated degradation; relative distribution to the nucleus increases upon DNA replication stress; CLB3 has a paralog, CLB4, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

CLB4

B-type cyclin CLB4, L000000352, YLR210W
B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M transition; may be involved in DNA replication and spindle assembly; accumulates during S phase and G2, then targeted for ubiquitin-mediated degradation; CLB4 has a paralog, CLB3, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Ubiquitylation regulates interactions of astral microtubules with the cleavage apparatus.

Kammerer D, Stevermann L, Liakopoulos D

BACKGROUND: Correct positioning of the mitotic spindle relative to the cleavage apparatus is crucial for successful mitosis. In budding yeast, the Adenomatous Polyposis Coli-related protein Kar9, yeast EB1, and Myo2, a type V myosin, mediate positioning of the mitotic spindle close to the septin-anchored cleavage apparatus at the bud neck. RESULTS: We find that Kar9 is ubiquitylated and degraded by ... [more]

Curr. Biol. Jul. 27, 2010; 20(14);1233-43 [Pubmed: 20598539]

Throughput

  • Low Throughput

Ontology Terms

  • protein/peptide modification (APO:0000131)

Additional Notes

  • double mutants show decreased ubiquitination of kar9

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CLB3 CLB4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
448309

Curated By

  • BioGRID