BAIT

IKI3

ELP1, KTI7, TOT1, Elongator subunit IKI3, L000003563, YLR384C
Subunit of Elongator complex; Elongator is required for modification of wobble nucleosides in tRNA; maintains structural integrity of Elongator; homolog of human IKAP, mutations in which cause familial dysautonomia (FD)
GO Process (2)
GO Function (1)
GO Component (3)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

BRE1

E3 ubiquitin-protein ligase BRE1, YDL074C
E3 ubiquitin ligase; forms heterodimer with Rad6p to monoubiquinate histone H2B-K123, which is required for the subsequent methylation of histone H3-K4 and H3-K79; required for DSBR, transcription, silencing, and checkpoint control; interacts with RNA-binding protein Npl3p, linking histone ubiquitination to mRNA processing; Bre1p-dependent histone ubiquitination promotes pre-mRNA splicing
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator.

Kong SE, Kobor MS, Krogan NJ, Somesh BP, Sogaard TM, Greenblatt JF, Svejstrup JQ

Fcp1 de-phosphorylates the RNA polymerase II (RNAPII) C-terminal domain (CTD) in vitro, and mutation of the yeast FCP1 gene results in global transcription defects and increased CTD phosphorylation levels in vivo. Here we show that the Fcp1 protein associates with elongating RNAPII holoenzyme in vitro. Our data suggest that the association of Fcp1 with elongating polymerase results in CTD de-phosphorylation ... [more]

J. Biol. Chem. Feb. 11, 2005; 280(6);4299-306 [Pubmed: 15563457]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: colony size (APO:0000063)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
IKI3 BRE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1281BioGRID
401235
BRE1 IKI3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1281BioGRID
364432
IKI3 BRE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1433BioGRID
2155621
BRE1 IKI3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
167221
BRE1 IKI3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
166238

Curated By

  • BioGRID