BAIT

SEN1

CIK3, NRD2, putative DNA/RNA helicase SEN1, L000001862, YLR430W
Presumed helicase and subunit of the Nrd1 complex (Nrd1p-Nab3p-Sen1p); complex interacts with the exosome to mediate 3' end formation of some mRNAs, snRNAs, snoRNAs, and CUTs; has a separate role in coordinating DNA replication with transcription, by associating with moving replication forks and preventing errors that occur when forks encounter transcribed regions; homolog of Senataxin, which is implicated in Ataxia-Oculomotor Apraxia 2 and a dominant form of ALS
Saccharomyces cerevisiae (S288c)
PREY

SGS1

ATP-dependent DNA helicase SGS1, L000001877, YMR190C
RecQ family nucleolar DNA helicase; role in genome integrity maintenance; regulates chromosome synapsis and meiotic joint molecule/crossover formation; stimulates DNA catenation/decatenation activity of Top3p; potential repressor of a subset of rapamycin responsive genes; rapidly lost in response to rapamycin in Rrd1p-dependent manner; similar to human BLM and WRN proteins implicated in Bloom and Werner syndromes; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Yeast sen1 helicase protects the genome from transcription-associated instability.

Mischo HE, Gomez-Gonzalez B, Grzechnik P, Rondon AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ

Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into ... [more]

Mol. Cell Jan. 07, 2011; 41(1);21-32 [Pubmed: 21211720]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: resistance to chemicals (APO:0000087)

Additional Notes

  • Hydroxyurea (CHEBI:44423 and PubChem CID: 3657)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SGS1 SEN1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1711BioGRID
2062790
SEN1 SGS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4854BioGRID
2003668
SGS1 SEN1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
2898293
SGS1 SEN1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2389095
SGS1 SEN1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

High-BioGRID
2340592
SEN1 SGS1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
857651
SGS1 SEN1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High0.0194BioGRID
822879

Curated By

  • BioGRID