SEN1
Gene Ontology Biological Process
- DNA-dependent DNA replication maintenance of fidelity [IMP]
- DNA-templated transcription, termination [IMP]
- mRNA 3'-end processing [IMP]
- mRNA polyadenylation [IMP]
- rRNA processing [IMP]
- regulation of transcription from RNA polymerase II promoter in response to DNA damage [IMP]
- snRNA processing [IMP]
- snoRNA 3'-end processing [IMP]
- tRNA processing [IMP]
- termination of RNA polymerase II transcription [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SGS1
Gene Ontology Biological Process
- DNA double-strand break processing [IGI]
- DNA duplex unwinding [IDA]
- DNA topological change [IDA]
- DNA unwinding involved in DNA replication [IDA]
- cellular response to DNA damage stimulus [IMP]
- chromosome organization [IMP]
- double-strand break repair via homologous recombination [IGI, IMP]
- gene conversion at mating-type locus, DNA double-strand break processing [IGI]
- intra-S DNA damage checkpoint [IGI, IMP]
- meiotic DNA double-strand break processing [IGI]
- meiotic chromosome segregation [IMP]
- mitotic sister chromatid segregation [IMP]
- negative regulation of meiotic joint molecule formation [IGI]
- regulation of reciprocal meiotic recombination [IGI]
- replicative cell aging [IMP]
- telomere maintenance [IGI]
- telomere maintenance via recombination [IGI, IMP]
- telomeric 3' overhang formation [IGI]
Gene Ontology Molecular Function
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Yeast sen1 helicase protects the genome from transcription-associated instability.
Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
- phenotype: resistance to chemicals (APO:0000087)
Additional Notes
- Hydroxyurea (CHEBI:44423 and PubChem CID: 3657)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SGS1 SEN1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1711 | BioGRID | 2062790 | |
SEN1 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4854 | BioGRID | 2003668 | |
SGS1 SEN1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 2898293 | |
SGS1 SEN1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 2389095 | |
SGS1 SEN1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | High | - | BioGRID | 2340592 | |
SEN1 SGS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 857651 | |
SGS1 SEN1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | 0.0194 | BioGRID | 822879 |
Curated By
- BioGRID