PRKCZ
Gene Ontology Biological Process
- blood coagulation [TAS]
- establishment of cell polarity [ISS]
- long-term synaptic potentiation [ISS]
- negative regulation of insulin receptor signaling pathway [IMP]
- negative regulation of peptidyl-tyrosine phosphorylation [IMP]
- negative regulation of protein complex assembly [IMP]
- peptidyl-serine phosphorylation [IDA]
- platelet activation [TAS]
- positive regulation of ERK1 and ERK2 cascade [IMP]
- positive regulation of NF-kappaB transcription factor activity [ISS]
- positive regulation of T-helper 2 cell cytokine production [ISS]
- positive regulation of T-helper 2 cell differentiation [ISS]
- positive regulation of excitatory postsynaptic membrane potential [ISS]
- positive regulation of insulin receptor signaling pathway [ISS]
- positive regulation of interleukin-10 secretion [ISS]
- positive regulation of interleukin-13 secretion [ISS]
- positive regulation of interleukin-4 production [ISS]
- positive regulation of interleukin-5 secretion [ISS]
- protein phosphorylation [IDA]
- signal transduction [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SP1
Gene Ontology Biological Process
- cellular lipid metabolic process [TAS]
- gene expression [TAS]
- positive regulation by host of viral transcription [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, TAS]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of transcription, DNA-templated [IDA]
- small molecule metabolic process [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [IDA]
- HMG box domain binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [ISS]
- bHLH transcription factor binding [ISS]
- core promoter sequence-specific DNA binding [ISS]
- double-stranded DNA binding [IDA]
- histone deacetylase binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IBA]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [IDA]
- HMG box domain binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [ISS]
- bHLH transcription factor binding [ISS]
- core promoter sequence-specific DNA binding [ISS]
- double-stranded DNA binding [IDA]
- histone deacetylase binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IBA]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
- nucleoplasm [IDA, TAS]
- nucleus [IC]
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Angiotensin II-inducible platelet-derived growth factor-D transcription requires specific Ser/Thr residues in the second zinc finger region of Sp1.
Sp1, the first identified and cloned transcription factor, regulates gene expression via multiple mechanisms including direct protein-DNA interactions, protein-protein interactions, chromatin remodeling, and maintenance of methylation-free CpG islands. Sp1 is itself regulated at different levels, for example, by glycosylation, acetylation, and phosphorylation by kinases such as the atypical protein kinase C-zeta. Although Sp1 controls the basal and inducible regulation of ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SP1 PRKCZ | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
PRKCZ SP1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID