BAIT

BRE1

E3 ubiquitin-protein ligase BRE1, YDL074C
E3 ubiquitin ligase; forms heterodimer with Rad6p to monoubiquinate histone H2B-K123, which is required for the subsequent methylation of histone H3-K4 and H3-K79; required for DSBR, transcription, silencing, and checkpoint control; interacts with RNA-binding protein Npl3p, linking histone ubiquitination to mRNA processing; Bre1p-dependent histone ubiquitination promotes pre-mRNA splicing
Saccharomyces cerevisiae (S288c)
PREY

SWI4

ART1, SBF complex DNA-binding subunit SWI4, L000000124, L000002252, YER111C
DNA binding component of the SBF complex (Swi4p-Swi6p); a transcriptional activator that in concert with MBF (Mbp1-Swi6p) regulates late G1-specific transcription of targets including cyclins and genes required for DNA synthesis and repair; Slt2p-independent regulator of cold growth; acetylation at two sites, K1016 and K1066, regulates interaction with Swi6p
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Epistatic relationships reveal the functional organization of yeast transcription factors.

Zheng J, Benschop JJ, Shales M, Kemmeren P, Greenblatt J, Cagney G, Holstege F, Li H, Krogan NJ

The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), ... [more]

Mol. Syst. Biol. Oct. 05, 2010; 6(0);420 [Pubmed: 20959818]

Quantitative Score

  • -9.507004242 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (epistatic or suppressor interactions) and S score < -2.5 for negative interactions (synthetic sick/lethal interactions).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SWI4 BRE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-9.8913BioGRID
214308
SWI4 BRE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1771BioGRID
375821
BRE1 SWI4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1771BioGRID
364386
SWI4 BRE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2096BioGRID
2109523
BRE1 SWI4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2207BioGRID
2089454
BRE1 SWI4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
456366
BRE1 SWI4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
166244

Curated By

  • BioGRID