BAIT
MOT3
ROX7, [MOT3], [MOT3+], L000002675, YMR070W
Transcriptional repressor and activator with two C2-H2 zinc fingers; involved in repression of a subset of hypoxic genes by Rox1p, repression of several DAN/TIR genes during aerobic growth and ergosterol biosynthetic genes in response to hyperosmotic stress; contributes to recruitment of Tup1p-Cyc8p general repressor to promoters; involved in positive transcriptional regulation of CWP2 and other genes; relocalizes to the cytosol in response to hypoxia; can form [MOT3+] prion
GO Process (4)
GO Function (3)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
SUB1
TSP1, L000003936, YMR039C
Transcriptional coactivator; facilitates elongation through factors that modify RNAP II; role in peroxide resistance involving Rad2p; role in nonhomologous end-joining (NHEJ) of ds breaks in plasmid DNA, but not chromosomal DNA; role in the hyperosmotic stress response through polymerase recruitment at RNAP II and RNAP III genes; protein abundance increases in response to DNA replication stress
GO Process (9)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
- RNA polymerase III transcriptional preinitiation complex assembly [IDA]
- double-strand break repair via nonhomologous end joining [IMP]
- hyperosmotic response [IGI]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IGI, IPI]
- positive regulation of transcription from RNA polymerase III promoter [IDA, IGI, IMP]
- regulation of transcription from RNA polymerase II promoter [ISS]
- regulation of transcription from RNA polymerase II promoter in response to stress [IDA, IGI, IMP]
- termination of RNA polymerase II transcription [IGI]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Epistatic relationships reveal the functional organization of yeast transcription factors.
The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), ... [more]
Mol. Syst. Biol. Oct. 05, 2010; 6(0);420 [Pubmed: 20959818]
Quantitative Score
- -5.240423487 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (epistatic or suppressor interactions) and S score < -2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID