BAIT

SLT2

BYC2, LYT2, MPK1, SLK2, mitogen-activated serine/threonine-protein kinase SLT2, L000001919, YHR030C
Serine/threonine MAP kinase; involved in regulating maintenance of cell wall integrity, cell cycle progression, and nuclear mRNA retention in heat shock; required for mitophagy and pexophagy; affects recruitment of mitochondria to phagophore assembly site (PAS); plays a role in adaptive response of cells to cold; regulated by the PKC1-mediated signaling pathway; SLT2 has a paralog, KDX1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

CCW12

YLR110C
Cell wall mannoprotein; plays a role in maintenance of newly synthesized areas of cell wall; localizes to periphery of small buds, septum region of larger buds, and shmoo tip; CCW12 has a paralog, YDR134C, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

Characterization of the yeast amphiphysins Rvs161p and Rvs167p reveals roles for the Rvs heterodimer in vivo.

Friesen H, Humphries C, Ho Y, Schub O, Colwill K, Andrews B

We have used comprehensive synthetic lethal screens and biochemical assays to examine the biological role of the yeast amphiphysin homologues Rvs161p and Rvs167p, two proteins that play a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. We found that unlike some forms of amphiphysin, Rvs161p-Rvs167p acts as an obligate heterodimer during vegetative growth and neither Rvs161p nor Rvs167p ... [more]

Mol. Biol. Cell Mar. 01, 2006; 17(3);1306-21 [Pubmed: 16394103]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: viability (APO:0000111)

Additional Notes

  • Overexpression of MNN9 or CCW12 could partially rescue the lethality of an rvs167 slt2 double mutant strain.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SLT2 CCW12
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5775BioGRID
385224
SLT2 CCW12
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6249BioGRID
2125921
SLT2 CCW12
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.577BioGRID
909776
CCW12 SLT2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
511143

Curated By

  • BioGRID