BAIT

RIO1

RRP10, protein kinase RIO1, L000003989, YOR119C
Serine kinase involved in cell cycling and pre-rRNA processing; associated with late pre-40S particles via its conserved C-terminal domain and participates in late 40S biogenesis; association with pre-40S particles regulated by its catalytic ATPase site and likely occurs after the release of Rio2p from these particles; involved in cell cycle progression and processing of the 20S pre-rRNA into mature 18S rRNA; essential gene
GO Process (2)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

PHO4

phosphate-sensing transcription factor PHO4, phoD, L000001420, YFR034C
Basic helix-loop-helix (bHLH) transcription factor of the myc-family; activates transcription cooperatively with Pho2p in response to phosphate limitation; binding to 'CACGTG' motif is regulated by chromatin restriction, competitive binding of Cbf1p to the same DNA binding motif and cooperation with Pho2p; function is regulated by phosphorylation at multiple sites and by phosphate availability
Saccharomyces cerevisiae (S288c)

Reconstituted Complex

An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.

Publication

Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes.

Fasolo J, Sboner A, Sun MG, Yu H, Chen R, Sharon D, Kim PM, Gerstein M, Snyder M

Protein kinases are key regulators of cellular processes. In spite of considerable effort, a full understanding of the pathways they participate in remains elusive. We globally investigated the proteins that interact with the majority of yeast protein kinases using protein microarrays. Eighty-five kinases were purified and used to probe yeast proteome microarrays. One-thousand-twenty-three interactions were identified, and the vast majority ... [more]

Genes Dev. Apr. 01, 2011; 25(7);767-78 [Pubmed: 21460040]

Throughput

  • High Throughput

Additional Notes

  • High Throughput: Proteome microarrays were used to identify proteins that interact with protein kinases.

Curated By

  • BioGRID