BAIT

SCH9

HRM2, KOM1, serine/threonine protein kinase SCH9, L000001810, YHR205W
AGC family protein kinase; functional ortholog of mammalian S6 kinase; phosphorylated by Tor1p and required for TORC1-mediated regulation of ribosome biogenesis, translation initiation, and entry into G0 phase; involved in transactivation of osmostress-responsive genes; regulates G1 progression, cAPK activity and nitrogen activation of the FGM pathway; integrates nutrient signals and stress signals from sphingolipids to regulate lifespan
Saccharomyces cerevisiae (S288c)
PREY

JJJ3

DPH4, YJR097W
Protein of unknown function; contains a CSL Zn finger and a DnaJ-domain; involved in diphthamide biosynthesis; ortholog human Dph4
GO Process (1)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Reconstituted Complex

An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.

Publication

Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes.

Fasolo J, Sboner A, Sun MG, Yu H, Chen R, Sharon D, Kim PM, Gerstein M, Snyder M

Protein kinases are key regulators of cellular processes. In spite of considerable effort, a full understanding of the pathways they participate in remains elusive. We globally investigated the proteins that interact with the majority of yeast protein kinases using protein microarrays. Eighty-five kinases were purified and used to probe yeast proteome microarrays. One-thousand-twenty-three interactions were identified, and the vast majority ... [more]

Genes Dev. Apr. 01, 2011; 25(7);767-78 [Pubmed: 21460040]

Throughput

  • High Throughput

Additional Notes

  • High Throughput: Proteome microarrays were used to identify proteins that interact with protein kinases.

Curated By

  • BioGRID