BAIT

TPK3

cAMP-dependent protein kinase catalytic subunit TPK3, L000002327, YKL166C
cAMP-dependent protein kinase catalytic subunit; promotes vegetative growth in response to nutrients via the Ras-cAMP signaling pathway; partially redundant with Tpk1p and Tpk2p; localizes to P-bodies during stationary phase; TPK3 has a paralog, TPK1, that arose from the whole genome duplication
GO Process (4)
GO Function (2)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

BUD14

protein phosphatase regulator BUD14, YAR014C
Protein involved in bud-site selection; Bud14p-Glc7p complex is a cortical regulator of dynein; inhibitor of the actin assembly factor Bnr1p (formin); diploid mutants display a random budding pattern instead of the wild-type bipolar pattern; relative distribution to the nucleus increases upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Publication

Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes.

Fasolo J, Sboner A, Sun MG, Yu H, Chen R, Sharon D, Kim PM, Gerstein M, Snyder M

Protein kinases are key regulators of cellular processes. In spite of considerable effort, a full understanding of the pathways they participate in remains elusive. We globally investigated the proteins that interact with the majority of yeast protein kinases using protein microarrays. Eighty-five kinases were purified and used to probe yeast proteome microarrays. One-thousand-twenty-three interactions were identified, and the vast majority ... [more]

Genes Dev. Apr. 01, 2011; 25(7);767-78 [Pubmed: 21460040]

Throughput

  • High Throughput

Additional Notes

  • High Throughput: Proteome microarrays were used to identify proteins that interact with protein kinases.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
BUD14 TPK3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3409BioGRID
2076833

Curated By

  • BioGRID