BAIT

CDC55

TMR4, protein phosphatase 2A regulatory subunit CDC55, L000000282, S000029602, L000003191, YGL190C
Non-essential regulatory subunit B of protein phosphatase 2A (PP2A); localization to cytoplasm requires Zds1p and Zds2p and promotes mitotic entry; localization to nucleus prevents mitotic exit; required for correct nuclear division and chromosome segregation in meiosis; maintains nucleolar sequestration of Cdc14p during early meiosis; limits formation of PP2A-Rts1p holocomplexes to ensure timely dissolution of sister chromosome cohesion; homolog of mammalian B55
Saccharomyces cerevisiae (S288c)
PREY

SWE1

WEE1, tyrosine protein kinase SWE1, L000002248, YJL187C
Protein kinase that regulates the G2/M transition; regulates the G2/M transition by inhibition of Cdc28p kinase activity; localizes to the nucleus and to the daughter side of the mother-bud neck; phosphorylates conserved tyrosine residue in N-terminus of Hsp90 in cell-cycle associated manner, thus modulating the ability of Hsp90 to chaperone a selected clientele; homolog of S. pombe Wee1p; potential Cdc28p substrate
Saccharomyces cerevisiae (S288c)

Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Publication

Budding yeast Dma1 and Dma2 participate in regulation of Swe1 levels and localization.

Raspelli E, Cassani C, Lucchini G, Fraschini R

Timely down-regulation of the evolutionarily conserved protein kinase Swe1 plays an important role in cell cycle control, as Swe1 can block nuclear division through inhibitory phosphorylation of the catalytic subunit of cyclin-dependent kinase. In particular, Swe1 degradation is important for budding yeast cell survival in case of DNA replication stress, while it is inhibited by the morphogenesis checkpoint in response ... [more]

Unknown May. 11, 2011; 0(0); [Pubmed: 21562220]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: viability (APO:0000111)

Additional Notes

  • deletion of swe1 rescues the lethality of a dma1/dma2/cdc55 or dma1/dma2/hsl1 triple mutant
  • genetic complex

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SWE1 CDC55
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low-BioGRID
854648
CDC55 SWE1
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
853293
CDC55 SWE1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
3389338
CDC55 SWE1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
3389334
CDC55 SWE1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
1537622
CDC55 SWE1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
160634

Curated By

  • BioGRID