BAIT
SSN3
CDK8, GIG2, NUT7, RYE5, SRB10, SSX7, UME5, URR1, cyclin-dependent serine/threonine protein kinase SSN3, L000002795, S000029631, L000002443, S000029520, L000002103, YPL042C
Cyclin-dependent protein kinase; component of RNA polymerase II holoenzyme; involved in phosphorylation of the RNA polymerase II C-terminal domain; involved in glucose repression
GO Process (7)
GO Function (3)
GO Component (1)
Gene Ontology Biological Process
- negative regulation of filamentous growth [IGI, IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP, IPI]
- nuclear-transcribed mRNA catabolic process, non-stop decay [IMP]
- phosphorylation of RNA polymerase II C-terminal domain [IDA, IMP]
- positive regulation of transcription from RNA polymerase II promoter by galactose [IMP]
- protein destabilization [IMP]
- protein phosphorylation [IDA, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
SET1
YTX1, histone methyltransferase SET1, KMT2, L000003286, YHR119W
Histone methyltransferase, subunit of the COMPASS (Set1C) complex; COMPASS methylates histone H3K4; Set1p-dependent H3K4 trimethylation recruits Nrd1p, allowing efficient termination of snoRNAs and cryptic unstable transcripts (CUTs) by Nrd1p-Nab3p-Sen1p pathway; modulates histone acetylation levels in promoter proximal regions to ensure efficient Nrd1p-dependent termination; required in transcriptional silencing near telomeres and at silent mating type loci; has a SET domain
GO Process (9)
GO Function (4)
GO Component (1)
Gene Ontology Biological Process
- ascospore formation [IMP]
- chromatin silencing at rDNA [TAS]
- chromatin silencing at silent mating-type cassette [IMP]
- chromatin silencing at telomere [IMP]
- histone H3-K4 methylation [IDA, IMP]
- peptidyl-lysine dimethylation [IMP, IPI]
- positive regulation of histone acetylation [IGI]
- regulation of transcription from RNA polymerase II promoter in response to stress [IGI, IMP]
- telomere maintenance [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Rewiring of genetic networks in response to DNA damage.
Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]
Science Dec. 03, 2010; 330(6009);1385-9 [Pubmed: 21127252]
Quantitative Score
- -2.631104 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: resistance to chemicals (APO:0000087)
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants in MMS-treated conditions. Genetic interactions were considered significant if they had an S score >=2.0 for positive interactions (epistatic or suppressor interactions) and S score <=2.5 for negative interactions (synthetic sick/lethal interactions).
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID