BAIT

TPK3

cAMP-dependent protein kinase catalytic subunit TPK3, L000002327, YKL166C
cAMP-dependent protein kinase catalytic subunit; promotes vegetative growth in response to nutrients via the Ras-cAMP signaling pathway; partially redundant with Tpk1p and Tpk2p; localizes to P-bodies during stationary phase; TPK3 has a paralog, TPK1, that arose from the whole genome duplication
GO Process (4)
GO Function (2)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

PRR1

serine/threonine protein kinase PRR1, YKL116C
Serine/threonine protein kinase; inhibits pheromone induced signaling downstream of MAPK, possibly at the level of the Ste12p transcription factor
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Rewiring of genetic networks in response to DNA damage.

Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M, Fiedler D, Dutkowski J, Guenole A, van Attikum H, Shokat KM, Kolodner RD, Huh WK, Aebersold R, Keogh MC, Krogan NJ, Ideker T

Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]

Science Dec. 03, 2010; 330(6009);1385-9 [Pubmed: 21127252]

Quantitative Score

  • -2.797871 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)
  • phenotype: resistance to chemicals (APO:0000087)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants in MMS-treated conditions. Genetic interactions were considered significant if they had an S score >=2.0 for positive interactions (epistatic or suppressor interactions) and S score <=2.5 for negative interactions (synthetic sick/lethal interactions).

Curated By

  • BioGRID