BAIT
CTK1
cyclin-dependent serine/threonine protein kinase CTK1, L000000432, YKL139W
Catalytic (alpha) subunit of C-terminal domain kinase I (CTDK-I); phosphorylates both RNA pol II subunit Rpo21p to affect transcription and pre-mRNA 3' end processing, and ribosomal protein Rps2p to increase translational fidelity; required for H3K36 trimethylation but not dimethylation by Set2p; similar to the Drosophila dCDK12 and human CDK12 and probably CDK13
GO Process (7)
GO Function (2)
GO Component (5)
Gene Ontology Biological Process
- mRNA 3'-end processing [IGI, IMP]
- peptidyl-serine phosphorylation [IDA]
- phosphorylation of RNA polymerase II C-terminal domain [IMP]
- positive regulation of DNA-templated transcription, elongation [IDA]
- positive regulation of transcription from RNA polymerase I promoter [IMP]
- positive regulation of translational fidelity [IMP]
- protein phosphorylation [IDA, IMP, ISS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
PHO4
phosphate-sensing transcription factor PHO4, phoD, L000001420, YFR034C
Basic helix-loop-helix (bHLH) transcription factor of the myc-family; activates transcription cooperatively with Pho2p in response to phosphate limitation; binding to 'CACGTG' motif is regulated by chromatin restriction, competitive binding of Cbf1p to the same DNA binding motif and cooperation with Pho2p; function is regulated by phosphorylation at multiple sites and by phosphate availability
GO Process (4)
GO Function (2)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Rewiring of genetic networks in response to DNA damage.
Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]
Science Dec. 03, 2010; 330(6009);1385-9 [Pubmed: 21127252]
Quantitative Score
- -2.927771 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
- phenotype: resistance to chemicals (APO:0000087)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants in MMS-treated conditions. Genetic interactions were considered significant if they had an S score >=2.0 for positive interactions (epistatic or suppressor interactions) and S score <=2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID