BAIT
MSG5
tyrosine/serine/threonine protein phosphatase MSG5, L000001188, YNL053W
Dual-specificity protein phosphatase; exists in 2 isoforms; required for maintenance of a low level of signaling through the cell integrity pathway, adaptive response to pheromone; regulates and is regulated by Slt2p; dephosphorylates Fus3p; MSG5 has a paralog, SDP1, that arose from the whole genome duplication
GO Process (7)
GO Function (2)
GO Component (3)
Gene Ontology Biological Process
- adaptation of signaling pathway by response to pheromone involved in conjugation with cellular fusion [IGI, IMP]
- inactivation of MAPK activity involved in cell wall organization or biogenesis [IDA, IGI, IMP, IPI]
- inactivation of MAPK activity involved in conjugation with cellular fusion [IDA, IMP]
- protein dephosphorylation [IDA, IMP]
- regulation of MAPK export from nucleus [IMP]
- regulation of fungal-type cell wall organization [IMP]
- regulation of pheromone-dependent signal transduction involved in conjugation with cellular fusion [IBA]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
NUP133
RAT3, L000002620, YKR082W
Subunit of Nup84p subcomplex of nuclear pore complex (NPC); contributes to nucleocytoplasmic transport, NPC biogenesis; is involved in establishment of a normal nucleocytoplasmic concentration gradient of GTPase Gsp1p; also plays roles in several processes that may require localization of genes or chromosomes at nuclear periphery, including double-strand break repair, transcription and chromatin silencing; relocalizes to cytosol in response to hypoxia; homolog of human NUP133
GO Process (13)
GO Function (1)
GO Component (5)
Gene Ontology Biological Process
- chromatin silencing at silent mating-type cassette [IDA]
- double-strand break repair [IGI, IMP]
- mRNA export from nucleus in response to heat stress [IMP]
- maintenance of chromatin silencing at telomere [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- nuclear pore distribution [IMP]
- poly(A)+ mRNA export from nucleus [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [IDA, IGI]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
- protein import into nucleus [IMP]
- tRNA export from nucleus [IMP]
- telomere tethering at nuclear periphery [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Rewiring of genetic networks in response to DNA damage.
Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They ... [more]
Science Dec. 03, 2010; 330(6009);1385-9 [Pubmed: 21127252]
Quantitative Score
- -3.106392 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: resistance to chemicals (APO:0000087)
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants in MMS-treated conditions. Genetic interactions were considered significant if they had an S score >=2.0 for positive interactions (epistatic or suppressor interactions) and S score <=2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID