BAIT

CLB5

B-type cyclin CLB5, L000000353, YPR120C
B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote initiation of DNA synthesis; functions in formation of mitotic spindles along with Clb3p and Clb4p; most abundant during late G1 phase; CLB5 has a paralog, CLB6, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

DPB11

protein kinase activating protein DPB11, L000003001, YJL090C
DNA replication initiation protein; loads DNA pol epsilon onto pre-replication complexes at origins; checkpoint sensor recruited to stalled replication forks by the checkpoint clamp complex where it activates Mec1p; along with Rfa1p, binds to ultrafine anaphase bridges in mitotic cells and prevents accumulation of chromatin bridges by stimulating the Mec1p kinase and suppressing homologous recombination; ortholog of human TopBP1; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast.

Mantiero D, Mackenzie A, Donaldson A, Zegerman P

Eukaryotic chromosomes are replicated from multiple origins that initiate throughout the S-phase of the cell cycle. Why all origins do not fire simultaneously at the beginning of S-phase is not known, but two kinase activities, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), are continually required throughout the S-phase for all replication initiation events. Here, we show that the two CDK ... [more]

Unknown Nov. 11, 2011; 0(0); [Pubmed: 22081107]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: cell cycle progression in s phase (APO:0000266)

Additional Notes

  • overexpression of Sld3, Sld2, Dpb11 and Dbf4 increases S-phase speed in clb5 mutant cells

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DPB11 CLB5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6198BioGRID
1992941

Curated By

  • BioGRID