CLB5
Gene Ontology Biological Process
- G1/S transition of mitotic cell cycle [IEP, IMP]
- G2/M transition of mitotic cell cycle [IEP, IMP]
- positive regulation of DNA replication [IMP]
- positive regulation of spindle pole body separation [IGI]
- premeiotic DNA replication [IGI, IMP]
- regulation of cyclin-dependent protein serine/threonine kinase activity [IDA]
- spindle assembly [IGI, IMP]
Gene Ontology Molecular Function
DPB11
Gene Ontology Biological Process
- DNA replication checkpoint [IMP]
- DNA replication initiation [IMP]
- double-strand break repair via break-induced replication [IMP]
- lagging strand elongation [TAS]
- leading strand elongation [TAS]
- mating type switching [IMP]
- mismatch repair [NAS]
- mitotic G2 DNA damage checkpoint [IGI]
- nucleotide-excision repair [TAS]
- positive regulation of protein phosphorylation [IDA]
- recombinational repair [IDA, IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Phenotypic Suppression
A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast.
Eukaryotic chromosomes are replicated from multiple origins that initiate throughout the S-phase of the cell cycle. Why all origins do not fire simultaneously at the beginning of S-phase is not known, but two kinase activities, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), are continually required throughout the S-phase for all replication initiation events. Here, we show that the two CDK ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: cell cycle progression in s phase (APO:0000266)
Additional Notes
- overexpression of Sld3, Sld2, Dpb11 and Dbf4 increases S-phase speed in clb5 mutant cells
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
DPB11 CLB5 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6198 | BioGRID | 1992941 |
Curated By
- BioGRID