Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Histone chaperone Asf1 plays an essential role in maintaining genomic stability in fission yeast.

Tanae K, Horiuchi T, Matsuo Y, Katayama S, Kawamukai M

The histone H3-H4 chaperone Asf1 is involved in chromatin assembly (or disassembly), histone exchange, regulation of transcription, and chromatin silencing in several organisms. To investigate the essential functions of Asf1 in Schizosaccharomyces pombe, asf1-ts mutants were constructed by random mutagenesis using PCR. One mutant (asf1-33(ts)) was mated with mutants in 77 different kinase genes to identify synthetic lethal combinations. The ... [more]

PLoS ONE Feb. 01, 2012; 7(1);e30472 [Pubmed: 22291963]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DSK1 CIA1
Biochemical Activity
Biochemical Activity

An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.

Low-BioGRID
664516

Curated By

  • BioGRID