BAIT

CDC15

LYT1, serine/threonine protein kinase CDC15, L000000255, YAR019C
Protein kinase of the Mitotic Exit Network; localized to the spindle pole bodies at late anaphase; promotes mitotic exit by directly switching on the kinase activity of Dbf2p; required for spindle disassembly after meiosis II; relocalizes to the cytoplasm upon DNA replication stress
GO Process (4)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

SPO12

SDB21, L000002003, S000029441, L000001821, YHR152W
Nucleolar protein of unknown function; positive regulator of mitotic exit; involved in regulating release of Cdc14p from the nucleolus in early anaphase, may play similar role in meiosis; SPO12 has a paralog, BNS1, that arose from the whole genome duplication
GO Process (3)
GO Function (0)
GO Component (2)

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

The yeast TEM1 gene, which encodes a GTP-binding protein, is involved in termination of M phase.

Shirayama M, Matsui Y, Toh-E A

LTE1 belongs to the CDC25 family that encodes a guanine nucleotide exchange factor for GTP-binding proteins of the ras family. Previously we have shown that LTE1 is essential for termination of M phase at low temperatures. We have identified TEM1 as a gene that, when present on a multicopy plasmid, suppresses the cold-sensitive phenotype of lte1. Sequence analysis of TEM1 ... [more]

Mol. Cell. Biol. Nov. 01, 1994; 14(11);7476-82 [Pubmed: 7935462]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CDC15 SPO12
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
155552
CDC15 SPO12
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
155554
CDC15 SPO12
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
155558
CDC15 SPO12
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
259482
CDC15 SPO12
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
155557
CDC15 SPO12
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1205BioGRID
1958120
CDC15 SPO12
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
162890
SPO12 CDC15
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
645270
SPO12 CDC15
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
1518187

Curated By

  • BioGRID