SSD1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
ELM1
Gene Ontology Biological Process
- axial cellular bud site selection [TAS]
- budding cell bud growth [IMP]
- cell morphogenesis [IMP]
- cytokinesis checkpoint [TAS]
- glucose metabolic process [IGI, IMP]
- positive regulation of protein autophosphorylation [IDA, IMP]
- protein autophosphorylation [IDA, IMP]
- protein phosphorylation [IDA, IGI]
- pseudohyphal growth [IMP]
- response to drug [IMP]
- response to osmotic stress [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Analysis of genetic interactions between DHH1, SSD1 and ELM1 indicates their involvement in cellular morphology determination in Saccharomyces cerevisiae.
The DHH1 gene of Saccharomyces cerevisiae belongs to a family of genes that encode highly conserved DEAD-box proteins commonly present in various eukaryotic organisms. Its precise function in yeast has not yet been well documented. To investigate its role in vivo, we constructed a DHH1 disruptant, characterized it genetically and searched for genes the mutations in which would cause synthetic ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
- phenotype: cell wall morphology (APO:0000053)
Additional Notes
- Dhh1/ELm1/Ssd1 triple mutants are very fragile and can only grow in the presence of sorbitol
- genetic complex
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SSD1 ELM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2384 | BioGRID | 369177 | |
ELM1 SSD1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2384 | BioGRID | 394463 | |
SSD1 ELM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5153 | BioGRID | 2098961 | |
SSD1 ELM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -7.2512 | BioGRID | 324360 | |
SSD1 ELM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.238 | BioGRID | 910361 | |
ELM1 SSD1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 657028 |
Curated By
- BioGRID