CDC28
Gene Ontology Biological Process
- 7-methylguanosine mRNA capping [IMP]
- chromatin remodeling [IMP]
- meiotic DNA double-strand break processing [IGI]
- negative regulation of double-strand break repair via nonhomologous end joining [IMP]
- negative regulation of meiotic cell cycle [IMP]
- negative regulation of mitotic cell cycle [IDA]
- negative regulation of sister chromatid cohesion [IMP]
- negative regulation of transcription, DNA-templated [IDA, IMP]
- peptidyl-serine phosphorylation [IDA]
- phosphorylation of RNA polymerase II C-terminal domain [IDA]
- positive regulation of meiotic cell cycle [IDA, IMP]
- positive regulation of mitotic cell cycle [IMP]
- positive regulation of nuclear cell cycle DNA replication [IDA, IMP]
- positive regulation of spindle pole body separation [IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [IDA, IGI]
- positive regulation of triglyceride catabolic process [IGI, IMP]
- protein phosphorylation [IDA]
- regulation of budding cell apical bud growth [IGI, IMP]
- regulation of double-strand break repair via homologous recombination [IMP]
- regulation of filamentous growth [IMP]
- regulation of protein localization [IMP]
- synaptonemal complex assembly [IMP]
- vesicle-mediated transport [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SWI4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
PCA
A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.
Publication
A novel genetic screen implicates Elm1 in the inactivation of the yeast transcription factor SBF.
BACKGROUND: Despite extensive large scale analyses of expression and protein-protein interactions (PPI) in the model organism Saccharomyces cerevisiae, over a thousand yeast genes remain uncharacterized. We have developed a novel strategy in yeast that directly combines genetics with proteomics in the same screen to assign function to proteins based on the observation of genetic perturbations of sentinel protein interactions (GePPI). ... [more]
Throughput
- Low Throughput
Additional Notes
- A protein-fragment complementation assay (PCA) involving the use of the enhanced yellow fluorescent protein Venus was used to detect protein interactions.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SWI4 CDC28 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
CDC28 SWI4 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 151313 | |
CDC28 SWI4 | Dosage Lethality Dosage Lethality A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene. | High | - | BioGRID | 2202691 | |
CDC28 SWI4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1247 | BioGRID | 1961805 | |
SWI4 CDC28 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.137 | BioGRID | 2040485 |
Curated By
- BioGRID