MYC
Gene Ontology Biological Process
- MAPK cascade [IMP]
- Notch signaling pathway [TAS]
- branching involved in ureteric bud morphogenesis [ISS]
- canonical Wnt signaling pathway [IDA]
- cell cycle arrest [IDA]
- cellular iron ion homeostasis [IDA]
- cellular response to DNA damage stimulus [IDA]
- cellular response to UV [IEP]
- cellular response to drug [IDA]
- chromatin remodeling [IDA]
- chromosome organization [IDA]
- energy reserve metabolic process [NAS]
- fibroblast apoptotic process [TAS]
- gene expression [TAS]
- negative regulation of apoptotic process [ISS]
- negative regulation of cell division [IDA]
- negative regulation of fibroblast proliferation [IDA]
- negative regulation of monocyte differentiation [IMP]
- negative regulation of stress-activated MAPK cascade [ISS]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- oxygen transport [NAS]
- positive regulation of DNA biosynthetic process [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of cysteine-type endopeptidase activity involved in apoptotic process [IDA]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of fibroblast proliferation [IDA, IMP]
- positive regulation of mesenchymal cell proliferation [ISS]
- positive regulation of metanephric cap mesenchymal cell proliferation [ISS]
- positive regulation of response to DNA damage stimulus [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP, TAS]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of gene expression [IDA]
- regulation of telomere maintenance [IMP]
- response to drug [IEP]
- response to gamma radiation [IDA]
- response to growth factor [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [ISS, TAS]
- E-box binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- protein binding [IPI]
- protein complex binding [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- DNA binding [ISS, TAS]
- E-box binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- protein binding [IPI]
- protein complex binding [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
PRC1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Dosage Lethality
A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.
Publication
Functional genomics identifies therapeutic targets for MYC-driven cancer.
MYC oncogene family members are broadly implicated in human cancers, yet are considered "undruggable" as they encode transcription factors. MYC also carries out essential functions in proliferative tissues, suggesting that its inhibition could cause severe side effects. We elected to identify synthetic lethal interactions with c-MYC overexpression (MYC-SL) in a collection of ∼3,300 druggable genes, using high-throughput siRNA screening. Of ... [more]
Throughput
- High Throughput
Additional Notes
- table S1, figure 1.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MYC PRC1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3399238 | |
MYC PRC1 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | - |
Curated By
- BioGRID