BAIT

RAD6

PSO8, UBC2, E2 ubiquitin-conjugating protein RAD6, L000001560, YGL058W
Ubiquitin-conjugating enzyme (E2); involved in postreplication repair as a heterodimer with Rad18p, DSBR and checkpoint control as a heterodimer with Bre1p, ubiquitin-mediated N-end rule protein degradation as a heterodimer with Ubr1p, as well as endoplasmic reticulum-associated protein degradation (ERAD) with Ubr1p in the absence of canonical ER membrane ligases
Saccharomyces cerevisiae (S288c)
PREY

RAD52

recombinase RAD52, L000001572, YML032C
Protein that stimulates strand exchange; stimulates strand exchange by facilitating Rad51p binding to single-stranded DNA; anneals complementary single-stranded DNA; involved in the repair of double-strand breaks in DNA during vegetative growth and meiosis and UV induced sister chromatid recombination
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Selenium Toxicity toward Yeast as Assessed by Microarray Analysis and Deletion Mutant Library Screen: A Role for DNA Repair.

Manikova D, Vlasakova D, Letavayova L, Klobucnikova V, Griac P, Chovanec M

Selenium (Se) is a trace element that is essential for human health as it takes part in many cellular processes. The cellular response to this compound elicits very diverse processes including DNA damage response and repair. Because an inorganic form of Se, sodium selenite (SeL), has often been a part of numerous studies and because this form of Se is ... [more]

Unknown Jul. 17, 2012; 0(0); [Pubmed: 22747191]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: resistance to chemicals (APO:0000087)
  • phenotype: uv resistance (APO:0000085)

Additional Notes

  • on MMS, UV
  • on sodium selenite

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RAD6 RAD52
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1319BioGRID
380706
RAD6 RAD52
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
161341
RAD6 RAD52
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
432028
RAD6 RAD52
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
457403
RAD52 RAD6
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
457690
RAD6 RAD52
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
163958
RAD52 RAD6
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
658642

Curated By

  • BioGRID