TUS1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
PHO85
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IGI, IMP]
- fungal-type cell wall organization [IGI]
- negative regulation of calcium-mediated signaling [IGI]
- negative regulation of glycogen biosynthetic process [IMP]
- negative regulation of macroautophagy [IMP]
- negative regulation of phosphate metabolic process [IGI]
- negative regulation of sequence-specific DNA binding transcription factor activity [IGI, IMP]
- negative regulation of transcription from RNA polymerase II promoter [IGI]
- positive regulation of macroautophagy [IMP]
- protein phosphorylation [IDA]
- regulation of establishment or maintenance of cell polarity [IGI]
- regulation of protein localization [IDA]
- regulation of protein stability [IGI, IMP]
- regulation of transcription involved in G1/S transition of mitotic cell cycle [IGI, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Functional specialization of the yeast Rho1 GTP exchange factors.
Rho GTPases are regulated in complex spatiotemporal patterns that may be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialization of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the ortholog of mammalian RhoA. First, we find that these GEFs selectively ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
PHO85 TUS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 81900 | |
PHO85 TUS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 450227 |
Curated By
- BioGRID