MDM2
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [IMP, TAS]
- Fc-epsilon receptor signaling pathway [TAS]
- cellular response to hypoxia [IEP]
- epidermal growth factor receptor signaling pathway [TAS]
- establishment of protein localization [IDA]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- negative regulation of DNA damage response, signal transduction by p53 class mediator [IDA]
- negative regulation of cell cycle arrest [IDA]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-lysine modification [IMP]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of cell proliferation [TAS]
- positive regulation of mitotic cell cycle [IMP]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [IDA]
- protein complex assembly [IDA]
- protein destabilization [IDA]
- protein localization to nucleus [IDA]
- protein ubiquitination [IDA]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA]
- regulation of protein catabolic process [IDA]
- response to antibiotic [IEP]
- synaptic transmission [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
HSP90AA1
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- G2/M transition of mitotic cell cycle [TAS]
- axon guidance [TAS]
- chaperone-mediated protein complex assembly [IDA]
- innate immune response [TAS]
- mitochondrial transport [TAS]
- mitotic cell cycle [TAS]
- nitric oxide metabolic process [TAS]
- positive regulation of nitric oxide biosynthetic process [ISS]
- protein import into mitochondrial outer membrane [IDA]
- protein refolding [TAS]
- regulation of nitric-oxide synthase activity [TAS]
- response to unfolded protein [NAS]
- signal transduction [NAS]
- small molecule metabolic process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Protein-peptide
An interaction is detected between a protein and a peptide derived from an interaction partner. This includes phage display experiments.
Publication
Phage-peptide display identifies the interferon-responsive, death-activated protein kinase family as a novel modifier of MDM2 and p21WAF1.
Phage-peptide display is a versatile tool for identifying novel protein-protein interfaces. Our previous work highlighted the selection of phage-peptides that bind to specific isoforms of MDM2 protein and in this work we subjected the putative MDM2-binding proteins to phage-peptide display to expand further on putative protein interaction maps. One peptide that bound MDM2 had significant homology to members of the ... [more]
Throughput
- High Throughput
Additional Notes
- Phage-peptide display
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| MDM2 HSP90AA1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
| MDM2 HSP90AA1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| MDM2 HSP90AA1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| MDM2 HSP90AA1 | Co-purification Co-purification An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps. | Low | - | BioGRID | - | |
| HSP90AA1 MDM2 | Protein-peptide Protein-peptide An interaction is detected between a protein and a peptide derived from an interaction partner. This includes phage display experiments. | Low | - | BioGRID | 691721 | |
| MDM2 HSP90AA1 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID