BAIT

PIK1

PIK120, PIK41, 1-phosphatidylinositol 4-kinase, L000001439, L000001438, YNL267W
Phosphatidylinositol 4-kinase; catalyzes first step in the biosynthesis of phosphatidylinositol-4,5-biphosphate; may control cytokinesis through the actin cytoskeleton; may control nonselective autophagy and mitophagy through trafficking of Atg9p
GO Process (1)
GO Function (1)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

VPS1

GRD1, LAM1, SPO15, VPL1, VPT26, dynamin-like GTPase VPS1, L000002006, YKR001C
Dynamin-like GTPase required for vacuolar sorting; also involved in actin cytoskeleton organization, endocytosis, late Golgi-retention of some proteins, regulation of peroxisome biogenesis
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway.

Sciorra VA, Audhya A, Parsons AB, Segev N, Boone C, Emr SD

Phosphorylated derivatives of phosphatidylinositol are essential regulators of both endocytic and exocytic trafficking in eukaryotic cells. In Saccharomyces cerevisiae, the phosphatidylinositol 4-kinase, Pik1p generates a distinct pool of PtdIns(4)P that is required for normal Golgi structure and secretory function. Here, we utilize a synthetic genetic array analysis of a conditional pik1 mutant to identify candidate components of the Pik1p/PtdIns(4)P signaling ... [more]

Mol. Biol. Cell Feb. 01, 2005; 16(2);776-93 [Pubmed: 15574876]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PIK1 VPS1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
481155

Curated By

  • BioGRID