LSM1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
TOR2
Gene Ontology Biological Process
- TOR signaling [IC, IMP]
- actin filament reorganization involved in cell cycle [TAS]
- cytoskeleton organization [IMP]
- establishment or maintenance of actin cytoskeleton polarity [IMP]
- negative regulation of autophagy [IGI]
- positive regulation of Rho guanyl-nucleotide exchange factor activity [IGI, IMP]
- positive regulation of Rho protein signal transduction [IGI, IMP]
- positive regulation of endocytosis [IMP]
- regulation of cell cycle [TAS]
- regulation of cell growth [TAS]
- ribosome biogenesis [IMP]
- signal transduction [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-RNA
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern blot, RT-PCR, affinity labeling, sequencing, or microarray analysis.
Publication
Global analysis of yeast mRNPs.
Proteins regulate gene expression by controlling mRNA biogenesis, localization, translation and decay. Identifying the composition, diversity and function of mRNA-protein complexes (mRNPs) is essential to understanding these processes. In a global survey of Saccharomyces cerevisiae mRNA-binding proteins, we identified 120 proteins that cross-link to mRNA, including 66 new mRNA-binding proteins. These include kinases, RNA-modification enzymes, metabolic enzymes and tRNA- and ... [more]
Throughput
- High Throughput
Additional Notes
- UV cross-linking followed by immunoprecipitation
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TOR2 LSM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1229 | BioGRID | 393474 | |
TOR2 LSM1 | PCA PCA A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay. | High | - | BioGRID | 3460534 |
Curated By
- BioGRID