TBF1
Gene Ontology Biological Process
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity [IDA]
- chromatin insulator sequence binding [IDA]
- sequence-specific DNA binding [IDA]
- telomeric DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity [IDA]
- chromatin insulator sequence binding [IDA]
- sequence-specific DNA binding [IDA]
- telomeric DNA binding [IDA]
Gene Ontology Cellular Component
RAD51
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Tbf1 and Vid22 promote resection and non-homologous end joining of DNA double-strand break ends.
The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. The Saccharomyces cerevisiae protein Tbf1, which is characterized by a Myb domain and is related to mammalian TRF1 and TRF2, has been proposed to act as a transcriptional activator. Here, we show that Tbf1 and its interacting protein Vid22 are new players in the response to DSBs. ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
- phenotype: resistance to chemicals (APO:0000087)
Additional Notes
- increased sensitivity to phleomycin (CID 72511) at 25 deg C
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAD51 TBF1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | 0.0493 | BioGRID | 822722 |
Curated By
- BioGRID