CDK6
Gene Ontology Biological Process
- G1/S transition of mitotic cell cycle [TAS]
- astrocyte development [ISS]
- cell cycle arrest [TAS]
- cell dedifferentiation [IMP]
- dentate gyrus development [ISS]
- generation of neurons [ISS]
- gliogenesis [IMP]
- lateral ventricle development [ISS]
- mitotic cell cycle [TAS]
- negative regulation of cell cycle [IDA]
- negative regulation of cell differentiation [TAS]
- negative regulation of cell proliferation [TAS]
- negative regulation of cellular senescence [IDA]
- negative regulation of epithelial cell proliferation [IMP]
- negative regulation of myeloid cell differentiation [IDA]
- negative regulation of osteoblast differentiation [IDA]
- positive regulation of cell-matrix adhesion [IDA]
- positive regulation of fibroblast proliferation [IMP]
- protein phosphorylation [IDA]
- regulation of cell motility [ISS]
- regulation of erythrocyte differentiation [IMP]
- regulation of gene expression [IDA, IMP]
- response to virus [IEP]
- type B pancreatic cell development [IDA]
Gene Ontology Molecular Function
PML
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [ISS]
- PML body organization [IDA, IMP]
- apoptotic process [IDA]
- cell cycle arrest [IDA]
- cellular senescence [IDA]
- circadian regulation of gene expression [ISS]
- cytokine-mediated signaling pathway [TAS]
- endoplasmic reticulum calcium ion homeostasis [ISS]
- entrainment of circadian clock by photoperiod [ISS]
- innate immune response [IDA]
- interferon-gamma-mediated signaling pathway [TAS]
- intrinsic apoptotic signaling pathway in response to DNA damage [IDA]
- intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator [ISS]
- maintenance of protein location in nucleus [IDA]
- negative regulation of angiogenesis [IMP]
- negative regulation of cell growth [IDA]
- negative regulation of cell proliferation [IMP]
- negative regulation of mitotic cell cycle [IDA]
- negative regulation of protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IMP]
- negative regulation of telomerase activity [IMP]
- negative regulation of telomere maintenance via telomerase [IMP]
- negative regulation of transcription, DNA-templated [IDA]
- negative regulation of translation in response to oxidative stress [IDA]
- negative regulation of viral release from host cell [IDA]
- positive regulation of apoptotic process involved in mammary gland involution [IDA]
- positive regulation of defense response to virus by host [IMP]
- positive regulation of extrinsic apoptotic signaling pathway [IMP]
- positive regulation of histone deacetylation [IDA]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein complex assembly [IDA]
- protein stabilization [IDA]
- protein targeting [IDA, IMP]
- regulation of calcium ion transport into cytosol [ISS]
- regulation of circadian rhythm [ISS]
- regulation of double-strand break repair [IMP]
- regulation of protein phosphorylation [ISS]
- regulation of transcription, DNA-templated [IMP]
- response to cytokine [IDA]
- response to hypoxia [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
A Cullin3-KLHL20 Ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression.
Tumor hypoxia is associated with disease progression and treatment failure, but the hypoxia signaling mechanism is not fully understood. Here, we show that KLHL20, a Cullin3 (Cul3) substrate adaptor induced by HIF-1, coordinates with the actions of CDK1/2 and Pin1 to mediate hypoxia-induced PML proteasomal degradation. Furthermore, this PML destruction pathway participates in a feedback mechanism to maximize HIF-1α induction, ... [more]
Throughput
- Low Throughput
Additional Notes
- cdk6/cyclin d
Curated By
- BioGRID