MARK4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RPTOR
Gene Ontology Biological Process
- TOR signaling [IDA]
- cell cycle arrest [TAS]
- cell growth [IMP]
- cellular response to amino acid stimulus [IMP]
- cellular response to nutrient levels [IMP]
- insulin receptor signaling pathway [TAS]
- positive regulation of TOR signaling [IDA]
- positive regulation of protein serine/threonine kinase activity [IDA]
- positive regulation of transcription from RNA polymerase III promoter [IMP]
- regulation of cell size [IMP]
Gene Ontology Molecular Function- 14-3-3 protein binding [IDA]
- RNA polymerase III type 1 promoter DNA binding [IDA]
- RNA polymerase III type 2 promoter DNA binding [IDA]
- RNA polymerase III type 3 promoter DNA binding [IDA]
- TFIIIC-class transcription factor binding [IDA]
- protein binding [IPI]
- protein complex binding [IPI]
- protein kinase binding [IPI]
- 14-3-3 protein binding [IDA]
- RNA polymerase III type 1 promoter DNA binding [IDA]
- RNA polymerase III type 2 promoter DNA binding [IDA]
- RNA polymerase III type 3 promoter DNA binding [IDA]
- TFIIIC-class transcription factor binding [IDA]
- protein binding [IPI]
- protein complex binding [IPI]
- protein kinase binding [IPI]
Gene Ontology Cellular Component
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) is a negative regulator of the mammalian target of rapamycin complex 1 (mTORC1).
The mammalian target of rapamycin (mTOR) is a central cell growth regulator. It resides in two protein complexes, which in mammals are referred to as mTORC1 and mTORC2. mTORC1, which is directly inhibited by rapamycin, promotes cell growth by stimulating protein synthesis and inhibiting autophagy. A wide range of extra and intracellular signals, including growth factors, nutrients, energy levels, and ... [more]
Throughput
- Low Throughput
Additional Notes
- MARK4 phosphorylates a portion of Raptor containing Ser792
Curated By
- BioGRID