BAIT

CDC55

TMR4, protein phosphatase 2A regulatory subunit CDC55, L000000282, S000029602, L000003191, YGL190C
Non-essential regulatory subunit B of protein phosphatase 2A (PP2A); localization to cytoplasm requires Zds1p and Zds2p and promotes mitotic entry; localization to nucleus prevents mitotic exit; required for correct nuclear division and chromosome segregation in meiosis; maintains nucleolar sequestration of Cdc14p during early meiosis; limits formation of PP2A-Rts1p holocomplexes to ensure timely dissolution of sister chromosome cohesion; homolog of mammalian B55
Saccharomyces cerevisiae (S288c)
PREY

CLN1

cyclin CLN1, L000000357, YMR199W
G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition; late G1 specific expression depends on transcription factor complexes, MBF (Swi6p-Mbp1p) and SBF (Swi6p-Swi4p); CLN1 has a paralog, CLN2, that arose from the whole genome duplication
GO Process (1)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

PP2A (Cdc55) regulates G 1 cyclin stability.

McCourt P, Gallo-Ebert C, Gonghong Y, Jiang Y, Nickels JT

Maintaining accurate progression through the cell cycle requires the proper temporal expression and regulation of cyclins. The mammalian D-type cyclins promote G 1-S transition. D1 cyclin protein stability is regulated through its ubiquitylation and resulting proteolysis catalyzed by the SCF E3 ubiquitin ligase complex containing the F-box protein, Fbx4. SCF E3-ligase-dependent ubiquitylation of D1 is trigged by an increase in ... [more]

Cell Cycle Mar. 21, 2013; 12(8); [Pubmed: 23518505]

Throughput

  • Low Throughput

Ontology Terms

  • inviable (APO:0000112)

Additional Notes

  • cdc55 cln1 cln2 triple mutant cells are inviable

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CLN1 CDC55
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low-BioGRID
352145

Curated By

  • BioGRID