SCH9
Gene Ontology Biological Process
- age-dependent response to oxidative stress involved in chronological cell aging [IMP]
- positive regulation of ribosomal protein gene transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase I promoter [IGI, IMP]
- positive regulation of transcription from RNA polymerase III promoter [IGI, IMP]
- protein phosphorylation [IMP]
- regulation of cell size [IMP]
- regulation of protein localization [IMP]
- regulation of response to osmotic stress [IMP]
- regulation of sphingolipid biosynthetic process [IMP]
- regulation of transcription from RNA polymerase II promoter in response to oxidative stress [IMP]
- replicative cell aging [IMP]
Gene Ontology Molecular Function
RAS2
Gene Ontology Biological Process
- activation of adenylate cyclase activity [IDA]
- ascospore formation [IMP]
- positive regulation of adenylate cyclase activity [IGI]
- positive regulation of pseudohyphal growth [IMP]
- positive regulation of transcription by galactose [IMP]
- protein localization to bud neck [IGI]
- regulation of protein localization [IMP]
- replicative cell aging [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Rescue
A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.
Publication
Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy.
Strategies to treat cancer have focused primarily on the killing of tumor cells. Here, we describe a differential stress resistance (DSR) method that focuses instead on protecting the organism but not cancer cells against chemotherapy. Short-term starved S. cerevisiae or cells lacking proto-oncogene homologs were up to 1,000 times better protected against oxidative stress or chemotherapy drugs than cells expressing ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: oxidative stress resistance (APO:0000083)
Additional Notes
- deletion of both SCH9 and RAS2 caused resistance to a 30- to 60-min treatment with hydrogen peroxide or menadione that was up to 1,000-fold higher than that of cells expressing the constitutively active oncogene homolog RAS2val19 or cells lacking SCH9 (sch9D)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAS2 SCH9 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.7882 | BioGRID | 515424 | |
SCH9 RAS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.8889 | BioGRID | 325174 | |
RAS2 SCH9 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 670703 | |
RAS2 SCH9 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 268399 | |
RAS2 SCH9 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 348597 | |
RAS2 SCH9 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 531048 | |
SCH9 RAS2 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 259033 | |
SCH9 RAS2 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 2466930 | |
RAS2 SCH9 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | BioGRID | 1521946 |
Curated By
- BioGRID