BAIT
TPP1
YMR156C
DNA 3'-phosphatase; functions in repair of endogenous damage of double-stranded DNA, activity is specific for removal of 3' phosphates at strand breaks; similar to the l-2-haloacid dehalogenase superfamily; homolog of human polynucleotide kinase/3′-phosphatase
GO Process (1)
GO Function (2)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
RTT107
ESC4, L000004424, YHR154W
Protein implicated in Mms22-dependent DNA repair during S phase; involved in recruiting the SMC5/6 complex to double-strand breaks; DNA damage induces phosphorylation by Mec1p at one or more SQ/TQ motifs; interacts with Mms22p and Slx4p; has four BRCT domains; has a role in regulation of Ty1 transposition; relative distribution to nuclear foci increases upon DNA replication stress
GO Process (2)
GO Function (0)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Abrogation of the Chk1-Pds1 checkpoint leads to tolerance of persistent single-strand breaks in Saccharomyces cerevisiae.
In budding yeast, Apn1, Apn2, Tpp1, and Rad1/Rad10 are important enzymes in the removal of spontaneous DNA lesions. apn1 apn2 rad1 yeast are inviable due to accumulation of abasic sites and strand breaks with 3' blocking lesions. We found that tpp1 apn1 rad1 yeast exhibited slow growth but frequently gave rise to spontaneous slow growth suppressors that segregated as single-gene ... [more]
Genetics Apr. 01, 2005; 169(4);1833-44 [Pubmed: 15687272]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- deletion of esc4 is lethal in a tpp1/apn1/rad1 mutant
- genetic complex
Curated By
- BioGRID