BAIT

RAD1

LPB9, ssDNA endodeoxyribonuclease RAD1, L000001555, YPL022W
Single-stranded DNA endonuclease (with Rad10p); cleaves single-stranded DNA during nucleotide excision repair and double-strand break repair; subunit of Nucleotide Excision Repair Factor 1 (NEF1); homolog of human XPF protein
Saccharomyces cerevisiae (S288c)
PREY

MRC1

YCL060C, chromatin-modulating protein MRC1, YCL061C
S-phase checkpoint protein required for DNA replication; couples DNA helicase and DNA polymerase; interacts with and stabilizes Pol2p at stalled replication forks during stress, where it forms a pausing complex with Tof1p and is phosphorylated by Mec1p; with Hog1p defines a novel S-phase checkpoint that permits eukaryotic cells to prevent conflicts between DNA replication and transcription; protects uncapped telomeres; degradation via Dia2p help cells resume cell cycle
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Abrogation of the Chk1-Pds1 checkpoint leads to tolerance of persistent single-strand breaks in Saccharomyces cerevisiae.

Karumbati AS, Wilson TE

In budding yeast, Apn1, Apn2, Tpp1, and Rad1/Rad10 are important enzymes in the removal of spontaneous DNA lesions. apn1 apn2 rad1 yeast are inviable due to accumulation of abasic sites and strand breaks with 3' blocking lesions. We found that tpp1 apn1 rad1 yeast exhibited slow growth but frequently gave rise to spontaneous slow growth suppressors that segregated as single-gene ... [more]

Genetics Apr. 01, 2005; 169(4);1833-44 [Pubmed: 15687272]

Throughput

  • Low Throughput

Ontology Terms

  • inviable (APO:0000112)

Additional Notes

  • combined deletion of tof1/mrc1 is lethal in a tpp1/apn1/rad1 mutant
  • genetic complex

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RAD1 MRC1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2451423

Curated By

  • BioGRID