BAIT

GIN4

ERC47, protein kinase GIN4, L000002876, YDR507C
Protein kinase involved in bud growth and assembly of the septin ring; proposed to have kinase-dependent and kinase-independent activities; undergoes autophosphorylation; similar to Hsl1p; GIN4 has a paralog, KCC4, that arose from the whole genome duplication
GO Process (5)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

DMA2

CHF2, ubiquitin-conjugating protein DMA2, S000029720, YNL116W
Ubiquitin-protein ligase (E3); controls septin dynamics and spindle position checkpoint (SPOC) with ligase Dma1p by regulating recruitment of Elm1p to bud neck; regulates levels of eIF2 subunit Gcd11p, as well as abundance, localization, and ubiquitination of Cdk inhibitory kinase Swe1p; ortholog of human RNF8, similar to human Chfr; contains FHA and RING finger domains; DMA2 has a paralog, DMA1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Dosage Growth Defect

A genetic interaction is inferred when over expression or increased dosage of one gene causes a growth defect in a strain that is mutated or deleted for another gene.

Publication

Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs.

Sharifpoor S, van Dyk D, Costanzo M, Baryshnikova A, Friesen H, Douglas AC, Youn JY, Vandersluis B, Myers CL, Papp B, Boone C, Andrews BJ

A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated ... [more]

Unknown Feb. 17, 2012; 0(0); [Pubmed: 22282571]

Quantitative Score

  • -0.699 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: colony size (APO:0000063)

Additional Notes

  • score threshold >=0.2=<

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GIN4 DMA2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
659087

Curated By

  • BioGRID