CLA4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CHS3
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs.
A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated ... [more]
Quantitative Score
- -0.289 [SGA Score]
 
Throughput
- High Throughput
 
Ontology Terms
- vegetative growth (APO:0000106)
 - colony size (APO:0000063)
 
Additional Notes
- score threshold <= -0.12, interaction detected by Synthetic Genetic Array (SGA)
 
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes | 
|---|---|---|---|---|---|---|
| CLA4 CHS3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.2891 | BioGRID | 407828  | |
| CLA4 CHS3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.3532 | BioGRID | 2175138  | |
| CHS3 CLA4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -21.1604 | BioGRID | 898656  | |
| CHS3 CLA4 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.  | High | - | BioGRID | 1066295  | |
| CHS3 CLA4 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.  | High | - | BioGRID | 451756  | |
| CLA4 CHS3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | Low | - | BioGRID | 80914  | |
| CHS3 CLA4 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | Low | - | BioGRID | 429796  | |
| CLA4 CHS3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | High | - | BioGRID | 450143  | 
Curated By
- BioGRID