BAIT

BCK1

LAS3, SAP3, SLK1, SSP31, mitogen-activated protein kinase kinase kinase BCK1, L000000162, YJL095W
MAPKKK acting in the protein kinase C signaling pathway; the kinase C signaling pathway controls cell integrity; upon activation by Pkc1p phosphorylates downstream kinases Mkk1p and Mkk2p; MAPKKK is an acronym for mitogen-activated protein (MAP) kinase kinase kinase
Saccharomyces cerevisiae (S288c)
PREY

SMI1

KNR4, L000000909, YGR229C
Protein involved in the regulation of cell wall synthesis; proposed to be involved in coordinating cell cycle progression with cell wall integrity
GO Process (2)
GO Function (0)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs.

Sharifpoor S, van Dyk D, Costanzo M, Baryshnikova A, Friesen H, Douglas AC, Youn JY, Vandersluis B, Myers CL, Papp B, Boone C, Andrews BJ

A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated ... [more]

Unknown Feb. 17, 2012; 0(0); [Pubmed: 22282571]

Quantitative Score

  • -0.246 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: colony size (APO:0000063)

Additional Notes

  • score threshold <= -0.12, interaction detected by Synthetic Genetic Array (SGA)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SMI1 BCK1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2458BioGRID
384106
BCK1 SMI1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2458BioGRID
390617
BCK1 SMI1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3026BioGRID
2135962
SMI1 BCK1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3013BioGRID
2123459
SMI1 BCK1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-20.0065BioGRID
897225
SMI1 BCK1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
320372
SMI1 BCK1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
485749
SMI1 BCK1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
112810

Curated By

  • BioGRID