CDC28
Gene Ontology Biological Process
- 7-methylguanosine mRNA capping [IMP]
- chromatin remodeling [IMP]
- meiotic DNA double-strand break processing [IGI]
- negative regulation of double-strand break repair via nonhomologous end joining [IMP]
- negative regulation of meiotic cell cycle [IMP]
- negative regulation of mitotic cell cycle [IDA]
- negative regulation of sister chromatid cohesion [IMP]
- negative regulation of transcription, DNA-templated [IDA, IMP]
- peptidyl-serine phosphorylation [IDA]
- phosphorylation of RNA polymerase II C-terminal domain [IDA]
- positive regulation of meiotic cell cycle [IDA, IMP]
- positive regulation of mitotic cell cycle [IMP]
- positive regulation of nuclear cell cycle DNA replication [IDA, IMP]
- positive regulation of spindle pole body separation [IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [IDA, IGI]
- positive regulation of triglyceride catabolic process [IGI, IMP]
- protein phosphorylation [IDA]
- regulation of budding cell apical bud growth [IGI, IMP]
- regulation of double-strand break repair via homologous recombination [IMP]
- regulation of filamentous growth [IMP]
- regulation of protein localization [IMP]
- synaptonemal complex assembly [IMP]
- vesicle-mediated transport [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
ELM1
Gene Ontology Biological Process
- axial cellular bud site selection [TAS]
- budding cell bud growth [IMP]
- cell morphogenesis [IMP]
- cytokinesis checkpoint [TAS]
- glucose metabolic process [IGI, IMP]
- positive regulation of protein autophosphorylation [IDA, IMP]
- protein autophosphorylation [IDA, IMP]
- protein phosphorylation [IDA, IGI]
- pseudohyphal growth [IMP]
- response to drug [IMP]
- response to osmotic stress [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs.
A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated ... [more]
Quantitative Score
- -0.17 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
- phenotype: colony size (APO:0000063)
Additional Notes
- score threshold <= -0.12, interaction detected by Synthetic Genetic Array (SGA)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDC28 ELM1 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | High | - | BioGRID | 152085 | |
ELM1 CDC28 | Dosage Growth Defect Dosage Growth Defect A genetic interaction is inferred when over expression or increased dosage of one gene causes a growth defect in a strain that is mutated or deleted for another gene. | High | -0.392 | BioGRID | 908904 | |
CDC28 ELM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1697 | BioGRID | 358652 | |
CDC28 ELM1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3737 | BioGRID | 1961823 | |
ELM1 CDC28 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1826 | BioGRID | 2053493 | |
CDC28 ELM1 | PCA PCA A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay. | Low | - | BioGRID | 662192 | |
ELM1 CDC28 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 160954 |
Curated By
- BioGRID